Evidence for *Brucella* spp. And *Mycoplasma* spp. Co-Infections in Blood of Chronic Fatigue Syndrome Patients

Garth L. Nicolson,\(^1\) PhD, Robert Gan,\(^1\) MB, PhD and Joerg Haier,\(^2\) MD, PhD

\(^1\)The Institute for Molecular Medicine, Huntington Beach, California, USA; \(^2\)Department of Surgery, University Hospital, Munster, Germany

ABSTRACT. We examined the blood of 94 North American Chronic Fatigue Syndrome (CFS) patients using forensic polymerase chain reaction and found that a subset (10.6%) of CFS patients show evidence of *Brucella* spp. infections compared to one of 70 control subjects (Odds Ratio = 8.2, Confidence Limits 1-66, *P*<0.01). Rural patients showed a higher incidence of *Brucella* spp. infections over urban patients (OR = 5.5, CL 1.3-23.5, *P*<0.02). Since CFS patients also have a high prevalence of one of four *Mycoplasma* species and sometimes show evidence of infections with *Chlamydia pneumoniae*, we examined *Brucella*-positive patients for other bacterial infections. Previously we found that 8% of the CFS patients showed evidence of *C. pneumoniae* and about 50% show evidence of *Mycoplasma* spp. infections. Since the presence of one or more chronic systemic infections may predispose patients to other infections, we examined the prevalence of *C. pneumoniae* and *Mycoplasma* spp. infections in *Brucella*-positive patients. We found only one *Brucella*-positive patient with *C. pneumoniae* and four other patients with evidence of *Mycoplasma* spp., suggesting that such bacterial infections occur independently in CFS patients. Control subjects (N=70) had low rates of *Brucella* spp. (1.4%), *Mycoplasma* spp. (7.2%) or *C. pneumoniae* (1.4%) infections, and there were no co-infections in control subjects. The results indicate that a subset of CFS patients show evidence of infection with *Brucella* spp., and some of these patients also have other bacterial infections.

INTRODUCTION

Chronic Fatigue Syndrome (CFS) patients usually have multiple, nonspecific, overlapping signs and symptoms, which makes such illnesses difficult to diagnose and treat (1-4). CFS patients can be subdivided into clinically relevant subcategories that may represent different disease states or co-morbid conditions or illnesses (5). An important subset of CFS patients is characterized by the presence of chronic bacterial and viral infections (3-13). Identifying systemic infections, such as those produced by *Mycoplasma* species (3-9), *Chlamydia pneumoniae* (9,10) and Human Herpes Virus-6 (HHV-6) (9,11-13), is likely to be important in determining the treatment strategies for many CFS patients. Although no single underlying cause has been established for CFS, there is growing awareness that CFS can have an infectious nature that is either causative for the illness, a cofactor for the illness or appears as an opportunistic infection(s) that aggravate patient morbidity (14). There are several reasons for this (15), including the nonrandom or clustered appearance of CFS, sometimes in immediate family members (16,17), the presence of certain signs and symptoms associated with infection, the often cyclic course of the illness and its response to anti-microbial therapies (4,5,14).

Here we examined CFS patients to see if a subset of patients showed evidence of infection with *Brucella* species. Brucellosis is a nonspecific clinical condition, sometimes similar to CFS but characterized by confirmed *Brucella* spp. infection. Approximately 40% of patients with *Brucella* spp. infections have a systemic, multi-organ chronic form of brucellosis that is similar to CFS in its multi-organ signs and symptoms (18-20). We were particularly interested in assessing whether CFS patients with *Brucella* spp. infection were likely to show evidence of additional bacterial infections.
MATERIALS AND METHODS

Patients

All patients were from North America (Canada and the United States, N=94) and underwent a medical history, completed a sign/symptom illness survey and had routine laboratory tests. If necessary, medical records were also reviewed to determine if patients suffered from organic or psychiatric illnesses that could explain their symptoms. When positive results were found in any of the evaluations that met the Fukuda et al. (1) exclusionary criteria, the patients were not included in the study. Additionally, all subjects were questioned about medication use during the three months prior to the study, and they had to be free of antibiotic treatment for two months prior to blood collection. Control subjects (N=70) had to be free of disease for at least three months prior to data collection, and they had to be free of antibiotic treatment for three months prior to blood collection.

Blood Collection

Blood was collected in EDTA-containing tubes and immediately brought to ice bath temperature as described previously (9,21-23). Samples were shipped with wet ice by air courier to the Institute for Molecular Medicine for analysis. All blood samples were blinded. Whole blood (50 µl) was used for preparation of DNA using Chelex (Biorad, Hercules, USA) as follows. Blood cells were lysed with nano-pure water (1.3 ml) at room temperature for 30 min. After centrifugation at 13 000 x g for 2 min, the supernatants were discarded. Chelex solution (200 µl) was added, and the samples were incubated at 56°C and at 100°C for 15 minutes each. Aliquots from the centrifuged samples were used immediately for PCR or flash frozen and stored at –70°C until use. Multiple aliquots were used for experiments on all patient samples.

Detection of Mycoplasma by Forensic PCR.

Amplification of the target gene sequences (9,21-23) was performed in a total volume of 50 µl PCR buffer (10 mM Tris-HCl, 50 mM KCl, pH 9) containing 0.1% Triton X-100, 200 µm each of dATP, dTTP, dGTP, dCTP, 100 pmol of each primer, and 0.5-1 µg of chromosomal DNA. Purified mycoplasmal DNA (0.5-1 ng of DNA) was used as a positive control for amplification. Additional primer sets were used to confirm the species specificity of the reaction (9). The amplification was carried out for 40 cycles with denaturing at 94°C and annealing at 60°C (genus-specific primers and M. penetrans) or 55°C (M. pneumoniae, M. hominis, M. fermentans). Extension temperature was 72°C in all cases. Finally, product extension was performed at 72°C for 10 min. Negative and positive controls were present in each experiment. The amplified samples were run on a 1% agarose gel containing 5 µl/100 ml of ethidium bromide in TAE buffer (0.04 M Tris-Acetate, 0.001 M EDTA, pH 8.0). After denaturing and neutralization, Southern blotting was performed as described below (9, 21-23).

Brucella spp. Detection by Forensic PCR.

PCR detection of Brucella spp. was done as described above for various Mycoplasma species, except that the conditions and primers differ. PCR was first carried out using the published Brucella spp.-specific primers consisting of amplification of a 223-bp fragment of of a 31 kDa membrane protein (24,25). In addition, we used the following primer set to confirm the primary results: 5’-AGTCGGGCGCTCTGGAGTCC-3’ (upstream) and downstream 5’-TCCTTACGCAGATAATG-3’. The DNA was amplified for 40 cycles using standard cycle parameters, and the product evaluated by agarose-gel electrophoresis. The efficiency of the PCR process was monitored by amplification of β-actin mRNA. The presence of amplifications inhibitors was evaluated by spiking negative samples with 2 µl of DNA from stock. Brucella spp.-specific oligonucleotides in the PCR product were identified by Southern Blot and dot-blot hybridization using a 21-mer internal probe. The internal probe (5’-TCCGGGTAAGCGTCGCC-3’) was 3’-end-labelled with digoxigenin–UTP or 32P-labeled probe.

Chlamydia pneumoniae Detection by Forensic PCR.

PCR detection of Chlamydia pneumoniae was done as described above for various Mycoplasma species, except that the conditions and primers differ. PCR was carried out using the C. pneumoniae-specific primers:
5’-TGACAACGTTAGAAATACAGC-3’ (upstream) and downstream 5’-CGCCTCTCTCTCTCTATAAT-3’. Additional primer sets were used to confirm the species specificity of the reaction. The DNA was amplified for 30 cycles using standard cycle parameters, and the product evaluated by agarose-gel electrophoresis. The efficiency of the PCR process was monitored by amplification of β-actin mRNA. The presence of amplifications inhibitors will be evaluated by spiking negative samples with 2 µl of DNA from stock. C. pneumoniae-specific oligonucleotides in the PCR product were identified by Southern Blot and dot-blot hybridization using a 21-mer internal probe: (5’-CGTTGAGTCAACGACTTAAGG-3’) 3’ end-labelled with digoxigenin–UTP or 32P-labeled probe.

Southern Blot Confirmation

The amplified samples were run on a 1% agarose gel containing 5 ml/100 ml of ethidium bromide in TAE buffer (0.04 M Tris-Acetate, 0.001 M EDTA, pH 8.0). After denaturing and neutralization, Southern blotting was performed as follows. The PCR product was transferred to a Nytran membrane. After transfer, UV cross-linking was performed. Membranes were prehybridized with hybridization buffer consisting of 1x Denhardt’s solution and 1 mg/ml salmon sperm DNA as blocking reagent. Membranes were then hybridized with digoxigenin–UTP or 32P-labeled internal probe (10^7 cpm per bag). After hybridization and washing to remove unbounded probe, the membranes were examined (digoxigenin-UTP-labeled probe) or exposed to autoradiography film (32P-labeled probe) for 0.5-2 days at –70°C.

Statistics

Subjects’ demographic characteristics were assessed using descriptive statistics and students’ t-tests (independent samples test, t-test for equality of means, 2-tailed). The 95% confidence interval was chosen for minimal significance. Odds Ratios were calculated using logistic regression (Logit method) Statistica 5.5 (Statsoft, Tulsa, OK).

RESULTS

Patients and Control Subjects

Patients and control subjects were approximately similar in age characteristics (control subjects mean age = 34.4; CFS patients: mean age = 38.9). CFS patients differed significantly according to sex distribution (p< 0.05); 69.1% of the patients were female, while 30.9% of the patients were male. Similarly, 58.6% of control subjects were female, while 44.3% were male. Patients were from both rural and urban environments (Table 1). All CFS patients fulfilled the revised international CDC case definition for Chronic Fatigue Syndrome (1).

Brucella spp. Infections in CFS Patients

Brucella spp. infections were found in 10 of 94 CFS patients (10.6%) but in only one of 70 control subjects (1.4%) (Odds Ratio OR = 8.2, Confidence Limits CL 1-66, P<0.01). Of the ten positive patients five were male (17.2% of males) and five were female (7.7% of females). Brucella spp. infections are often found in rural areas where contact with domestic animals is more common than in urban environments (18). Therefore, we examined the incidence of Brucella spp. infections in rural inhabitants. The rural CFS patients living in rural environments had an increased Odds Ratio for a positive Brucella spp. Response compared with the urban CFS patients (OD = 5.5, CL 1.3-23.5, P<0.02). Males living in rural environments (37.9% of males) accounted for four of five Brucella spp. infections (80%), whereas females in rural environments (30.8% of females) accounted for three of five (60%) Brucella spp. infections (Table 2). The one positive control subject was from an urban environment, and there were no differences in the incidence of other infections between rural and urban patients.

Other Chronic Bacterial Infections in CFS Patients

When we examined CFS patients’ blood for the presence of chronic bacterial infections other than Brucella spp. using forensic PCR, evidence for Mycoplasma species infections were found in 50% of CFS patients and 8.5% of control subjects (OR = 8.1). Evidence for C. pneumoniae infections were found in 8.3% of CFS patients and in 1.5% of control subjects (OR = 13.1). We did not find any multiple co-infections in control
subjects. The differences between chronic infections in CFS patients and control subjects were significant (Table 2).

Using species-specific primers and PCR the incidence of various Mycoplasma species in the blood of Brucella spp.-positive and -negative CFS patients was examined. Four of ten patients with Brucella spp. positive results (40%) were also positive for Mycoplasma infections, whereas 43 of 84 Brucella spp.-negative patients (51.2%) were also Mycoplasma-positive (p< 0.001 compared to control subjects). M. pneumoniae infections were observed in 27 of 43 Brucella spp.-positive CFS patients (P<0.001 compared to control subjects), M. fermentans infections occurred in 20 patients (P<0.001 compared to control subjects) and M. hominis in 14 patients (p< 0.001 compared to control subjects), whereas M. penetrans infections were found at lower (5 of 43 Brucella spp.-negative patients) incidence (P<0.01 compared to control subjects) (Table 2). We examined 70 control subjects who did not show clinical signs and symptoms and found that 6 were positive for a single species of Mycoplasma (Table 2). Differences between CFS patients and control subjects were highly significant (P<0.001 compared to control subjects).

Multiple Mycoplasmal Co-Infections in CFS Patients

Single infections with one of the four Mycoplasma spp. that were tested were observed in four of the Brucella spp.-positive patients, and interestingly we did not find multiple Mycoplasma spp. infections in Brucella spp.-positive patients (Table 2). In the seven control subjects that were positive for mycoplasmal infections we found two controls that were positive for M. fermentans, three for M. pneumoniae and one for M. hominis and none for M. penetrans but similar to previous studies (9,22,23) these were found only as single infections. Also similar to our previous studies (9,22,23), the most commonly observed infection was M. pneumoniae (29 of 94 CSF patients), followed by M. fermentans in 22 patients, M. hominis in 14 patients and M. penetrans in five patients. Multiple mycoplasmal infections were detected in 18 of the 43 Brucella spp.-negative patients (41.8%), whereas single infections were found in four of ten (40%) of the Brucella spp.-positive patients. The few control or healthy subjects that showed evidence for mycoplasmal infections only had single species infections. Similar to our previous results (9,22,23), we have not found patients positive for all four of the tested Mycoplasma species (Table 2).

Co-Infections with C. pneumoniae in CFS Patients

Chlamydia pneumoniae infections were found in 8 of 94 (8.5% of CFS patients and one control subject out of 70 (1.4%) that also did not have mycoplasmal infections (p < 0.01) (Table 2). This finding is similar but somewhat lower than previously reported for CFS patients (9,10). When we examined the incidence of C. pneumoniae infections in Brucella spp.-positive and -negative patients, we found that there was no preference for multiple infections, nor was there a preference for C. pneumoniae in Brucella spp. co-infections (Table 2). Thus there appeared to be no preference for particular combinations of co-infections in CFS patients.

DISCUSSION

We previously reported that chronic bacterial and viral infections appear to be a rather common feature of CFS, and many CFS patients have multiple infections (9,22,26). Since CFS patients often report that their CFS signs and symptoms slowly evolved after acute infections, this result is not unexpected (9,26). Also, the severity of CFS signs and symptoms appear to be related to the number of chronic infections but not their specific type (26). In addition to chronic infections, chemical exposures, multiple vaccinations, severe trauma or other conditions that are associated with immune suppression and opportunistic infections also may be related to results found here. Since about 40% of brucellosis patients have multiple organ signs and symptoms (19,20) that could be diagnosed as severe CFS in some patients, the finding that a subset of CFS patients have Brucella spp. infections and fit the diagnostic profile of CFS is not unreasonable. In some areas the incidence of Brucella spp. infections is fairly high, and in these patients multiple infections with other bacteria are not uncommon (24,27). We found that Brucella spp. infections were more prevalent in CFS patients from rural environments, but we did not have enough Brucella spp.-positive patients to statistically conclude that rural CFS patients were more likely to have Brucella spp. infections than CFS patients living in urban environments.
Brucella spp. cause slow-growing intracellular, gram-negative, facultative infections in animals and humans. These bacteria are zoonotic and capable of being transmitted from animals to humans. Although there are at least eight species of Brucella that are pathogenic, only B. melitensis, B. abortus, B. suis and B. canis have been reported to be pathogenic in humans (28). Differentiating between species of Brucella can be difficult because of morphological and antigenic similarities between species (26,27); however, use of PCR has enabled the differentiation of the most common Brucella species (28). PCR detection of Brucella spp. is also extremely sensitive and specific compared to other techniques (24,25) but it does have its limitations, especially if great care is not taken in the preparation of reagents and specimens. For our purposes the use of primers that can detect all of the pathogenic species in humans of the genus Brucella was sufficient. For treatment, it is not necessary to know the exact species of Brucella.

Previously we studied North American and European CFS patients and found that most showed evidence of mycoplasmal infections (5,9,22,23). Like Brucella spp., Mycoplasma spp. are slow-growing, fastidious, intracellular infections that can invade a variety of tissues but they can also present as superficial infections (29,33,34). Others who studied CFS patients also found evidence of widespread mycoplasmal infections (6-8). When we examined the incidence of particular mycoplasmal infections in North American CFS patients, we found that most patients had multiple mycoplasmal infections, which were for the most part combinations of M. fermentans and other mycoplasma species (9,22,29). However, in a study on European CFS patients a slightly different picture was found (5). The most common species found was M. hominis, and there was a lower overall rate of multiple mycoplasmal co-infections in the European CFS patients (5). We also found that more than 50% of North American patients with rheumatoid arthritis had mycoplasmal infections, and in the majority of these patients multiple mycoplasmal co-infections infections were found (21,32). Arthritis signs and symptoms are commonly found in focal forms of Brucella spp. infections (25,35).

In CFS patients we found that multiple co-infections involving Mycoplasma spp., C. pneumoniae and HHV-6 were common (9,29), and here we found that some Mycoplasma spp. co-infections also involve Brucella spp. Thus a common feature of CFS may be the presence of multiple, slow-growing, chronic, intracellular infections. The presence of multiple co-infections in CFS probably play an important role in determining the severity of systemic signs and symptoms found in CFS patients. In support of this we found that the severity of signs and symptoms in CFS patients was related to the presence of multiple chronic infections (29). Since CFS patients that previously tested positive for chronic infections have benefited from therapies directed at their chronic infections (4,34), we consider it important that Brucella spp. as well as Mycoplasma spp. and C. pneumoniae infections be carefully considered in the clinical management of CFS (4,34).

REFERENCES

Table 1. Patient demographic data.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Mean age (SD)</th>
<th>Range</th>
<th>Males (%)</th>
<th>Females (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>94</td>
<td>38.9 (9.8)</td>
<td>19-69</td>
<td>29 (30.9)</td>
<td>65 (69.1)</td>
</tr>
<tr>
<td>Controls</td>
<td>70</td>
<td>34.4 (9.3)</td>
<td>20-61</td>
<td>31 (44.3)</td>
<td>41 (58.6)</td>
</tr>
<tr>
<td>Female patients</td>
<td>65</td>
<td>39.1 (9.8)</td>
<td>19-66</td>
<td>0 (0.0)</td>
<td>65 (100.0)</td>
</tr>
<tr>
<td>Male patients</td>
<td>29</td>
<td>38.2 (10.3)</td>
<td>21-69</td>
<td>29 (30.9)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Rural female patients</td>
<td>20</td>
<td>40.3 (14.2)</td>
<td>22-61</td>
<td>0 (0.0)</td>
<td>20 (30.8)</td>
</tr>
<tr>
<td>Rural male patients</td>
<td>11</td>
<td>36.1 (13.2)</td>
<td>21-59</td>
<td>11 (37.9)</td>
<td>0 (0.0)</td>
</tr>
</tbody>
</table>

Table 2. Prevalence of Chronic Bacterial Infections in *Brucella* spp.-positive and *Brucella* spp.-negative CSF Patients.

<table>
<thead>
<tr>
<th>Type of infection</th>
<th>Brucella spp.-positive CFS Patients N = 10 (%)</th>
<th>Brucella spp.-negative CFS Patients N = 84 (%)</th>
<th>Brucella spp.-positive Control Subjects N = 1</th>
<th>Brucella spp.-negative Control Subjects N = 69</th>
<th>Odds ratio (95% CL) (CFS/Control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. Pneumoniae</td>
<td>1 (10.0)</td>
<td>7 (8.3)</td>
<td>0 (0.0)</td>
<td>1 (1.5)</td>
<td>13.1 (1.7-103) P<0.001</td>
</tr>
<tr>
<td>Mycoplasma spp.</td>
<td>4 (40.0)</td>
<td>43 (51.2)</td>
<td>0 (0.0)</td>
<td>6 (7.2)</td>
<td>8.1 (3.4-18.8) P<0.001</td>
</tr>
<tr>
<td>M. pneumoniae</td>
<td>2 (40.0)</td>
<td>27 (62.8)</td>
<td>0 (0.0)</td>
<td>3 (43.5)</td>
<td>9.9 (2.9-34.6) P<0.001</td>
</tr>
<tr>
<td>M. fermentans</td>
<td>2 (40.0)</td>
<td>20 (46.5)</td>
<td>0 (0.0)</td>
<td>2 (28.6)</td>
<td>10.4 (2.3-46.4) P<0.001</td>
</tr>
<tr>
<td>M. honinis</td>
<td>0 (0.0)</td>
<td>14 (32.6)</td>
<td>0 (0.0)</td>
<td>1 (14.3)</td>
<td>12.1 (1.5-95.7) P<0.001</td>
</tr>
<tr>
<td>M. penetrans</td>
<td>0 (0.0)</td>
<td>5 (11.6)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td></td>
</tr>
<tr>
<td>Single mycoplasmal infection</td>
<td>4 (100)</td>
<td>25 (58.1)</td>
<td>1 (100)</td>
<td>6 (100)</td>
<td>4.0 (1.6-9.9) P<0.001</td>
</tr>
<tr>
<td>Multiple mycoplasmal infections</td>
<td>0 (0.0)</td>
<td>18 (41.8)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td></td>
</tr>
</tbody>
</table>